LOL!

2/10/2011

math reference formula

Here is the list of the calculus formula. hope it will help you in your work.^_^



Reminder : If x^.5 ,in words it is the square root of x.


A) DIFFERENTIATION FORMULAS
Note : c=constant, f and g are functions

1) (cf)' = cf'


2) (f+g)' = f'+g'


3) (f-g)' = f'-g'


4) (fg)' = f'g+fg'


5) (f/g)' = (f'g-fg')/g^2


6) (d/dx)(x^n) = nx^(n-1)


7) (d/dx)c = 0
B) DIFFERENTIATION of TRIGONOMETRIC FUNCTIONS 1) (d/dx) sin x = cos x


2) (d/dx) cos x = -sin x


3) (d/dx) tan x = sec^2(x)


4) (d/dx) csc x = -csc x cot x


5) (d/dx) sec x = sec x tan x


6) (d/dx) cotx = -csc^2(x)
C) TRIGONOMETRIC IDENTITIES 1) sin^2(x)+cos^2(x) = 1


2) tan^2(x)+1 = sec^2(x)


3) cot^2(x)+1 = csc^2(x)


4) tan x = sin x / cos x


5) cot x = cos x / sin x


6) csc x = 1 / sin x


7) secx = 1 / cos x


8) cot x = 1 / tan x


Addition Formulas:


9) sin(x+y) = sin x cos y + cos x sin y


10) cos(x+y) = cos x cos y - sin x sin y


11) tan(x+y) = (tan x + tan y) / (1-tan x tan y)


Subtraction Formulas:


12) sin(x-y) = sin x cos y - cos x sin y


13) cos(x-y) = cos x cos y + sin x sin y


14) tan(x-y) = (tan x - tan y) / (1+tan x tan y)


Double Angle Formulas:


15) sin 2x = 2sin x cos x


16) cos 2x = cos^2(x)-sin^2(x)


17) cos 2x = 2cos^2(x)-1


18) cos 2x = 1-2sin^2(x)


Half Angle Formulas:


19) cos^2(x) = (1+cos 2x) / 2


20) sin^2(x) = (1-cos 2x) / 2


Product Formulas:


21) sin x cos y = [sin (x+y)+sin (x-y)] / 2


22) cos x cos y = [cos (x+y)+cos (x-y)] / 2


23)sin x sin y = [cos (x-y)-cos (x+y)] / 2
D) QUADRATIC EQUATION for ax^2+bx+c = 0


x = [-b(+or-)(b^2-4ac)^.5] / 2a
E) BASIC INTEGRAL FORMS 1) ƒudv = uvvdu


2) ƒu^n du = (1 / (n+1))u^(n+1)+C


3) ƒdu/u = ln|u|+C


4) ƒe^u du = e^u+C


5) ƒa^u du = (1 / (lna))a^u+C


6) ƒsin udu = -cos u +C


7) ƒcos udu = sin u+C


8) ƒsec^2(u)du = tan u+C


9) ƒcsc^2(u)du = -cot u+C


10) ƒsec u tan udu = sec u+C


11) ƒcsc u cot udu = -csc u+C


12) ƒtan udu = ln|sec u|+C


13) ƒcot udu = ln|sin u|+C


14) ƒsec udu = ln|sec u+tan u|+C


15) ƒcsc udu = ln|csc u-cot u|+C


16) ƒdu/(a^2-u^2)^.5 = [sin^-1(u / a)]+C


17) ƒdu/(a^2+u^2) = [(tan^-1(u / a)) / a]+C


18) ƒdu/[u(u^2-a^2)^.5] = [(sec^-1(u / a)) / a]+C


19) ƒdu/(a^2-u^2) = [ln|(u+a) / (u-a)|] / 2a+C


20) ƒdu/(u^2-a^2) = [ln|(u-a) / (u+a)|] / 2a+C
F) TRIGONOMETRIC INTEGRAL FORMS 21) ƒsin^2(u)du = (u / 2)-(sin 2u) / (2u)+C


22) ƒcos^2(u)du = (u / 2)+(sin 2u) / (2u)+C


23) ƒtan^2(u)du = tan u -u+C


24) ƒcot^2(u)du = -cot u -u+C


25) ƒsin^3(u)du = -[{2+sin^2(u)}cos u / 3]+C


26) ƒcos^3(u)du = [{2+cos^2(u)}sin u / 3]+C


27) ƒtan^3(u)du = [{tan^2(u)} / 2]+ln|cos u|+C


28) ƒcot^3(u)du = -[(cot^2(u)] / 2 - ln|sin u|+C


29) ƒsec^3(u)du = [(sec u tan u ) / 2]+[(ln|sec u + tan u|) / 2]+C


30) ƒcsc^3(u)du = -[(csc u cot u) / 2]+[(ln|csc u - cot u|) / 2]+C


31) ƒusin u du = sin u -ucos u+C


32) ƒucos udu = cos u + usin u+C
G) EXPONENTIAL and LOGARITHMIC INTEGRAL FORMS 33) ƒue^(au)du = [(au-1) / a^2]e^(au)+C


34) ƒ(u^n)(e^au)du = {[(u^n)(e^au)] / a} - (n / a)ƒ[u^(n-1)](e^au)du


35) ƒ(e^au)sin bu du = [(e^au) / (a^2+b^2)](asin bu-bcos bu)+C


36) ƒ(e^au)cos bu du = [(e^au) / (a^2+b^2)](acos bu+bsin bu)+C


37) ƒln udu = uln u-u+C


38) ƒ(u^n)ln udu = [(u^(n+1)) / (n+1)^2][(n+1)(ln u-1)]+C


39) ƒd/ (uln u) = ln|ln u|+C
H) HYPERBOLIC INTEGRAL FORMS 40) ƒsinh udu = cosh u+C


41) ƒcosh udu = sinh u+C


42) ƒtanh udu = lncosh u+C


43) ƒcoth udu = ln|sinh u|+C


44) ƒsech udu = tan^-1|sinh u|+C


45) ƒcsch udu = ln|tan(/ 2)|+C


46) ƒsech^2(u)du = tanh u+C


47) ƒcsch^2(u)du = -coth u+C


48) ƒsech utanh udu = -sech u+C


49) ƒcsch ucoth udu = -csch u+C
I) COORDINATE CONVERSION FORMULAS θ = theta , φ = phi

From Cylindrical to Rectangular

x = rcos θ

y = rsin θ

z = z

From Rectangular to Cylindrical

r = (x^2 + y^2)^.5

tan θ = y / x

z = z

From Spherical to Rectangular

x = psin φ cos θ

y = psin φ sin θ

z = pcos φ

From Rectangular to Spherical

p = (x^2 + y^2 + z^2)^.5

φ = cos^-1(z / p)

cos θ = x / (psin φ)

sin θ = y / (psin φ)

1 comments:

aqmalhakimmeman said...

tak fahammmmmmmmmmmmmmmmmmmmm

Post a Comment